
Fo
x
D
e
c
U
se
r
M
a
n
u
a
l

FoxDec 0.4

Decompilation based on Formal Methods

prof. Binoy Ravindran PI
dr. Freek Verbeek co-PI

Joshua Bockenek PhD
Daniel Spaniol PhD

freek@vt.edu

Supported by the DARPA project FALCON:
Formal Analysis of Legacy COde domaiNs

User Manual
June 9, 2023

mailto:freek@vt.edu

FoxDec is a tool actively developped at Virginia Tech (US) and the Open
University of the Netherlands. Its aim is to lift binaries to a higher level of
abstraction, in such a way that formal guarantees can be provided that the lifted
representation is sound with respect to the original binary. This document provides
a user manual, further information on implementation and limitations, as well as
references for further reading.

Remark: FoxDec is evolving quickly, and new features and capabilities are
actively being developped. Do not hesitate to contact us for questions, remarks and
suggestions.

1 FoxDec Story
One of the key goals for the VT FALCON project is trustworthy, provably sound
x86-64 binary lifting. The first step of any approach to binary lifting is disassembly.
A fundamental challenge herein is to resolve indirect branches. Instead of leveraging
heuristics, a provably sound approach requires indirections to be resolved based
on binary-level invariants that provide, e.g., information on pointer values stored
in stateparts, and bounds on indices into jump tables. We have thus developped
FoxDec, a tool that integrates disassembly, indirection resolving, and invariant
generation into one tool. Key characteristic is that FoxDec enables formal verification:
the invariants can be exported to the Isabelle/HOL theorem prover. In Isabelle/HOL,
proof scripts automatically show that all generated invariants are sound.

When applying FoxDec to a binary, information is generated on disassembled
instructions, reconstructed control flow, function boundaries, and invariants. All
this information is programmatically available through an interface, but it also
stored in graphical representations. Most notably, an annotated call graph is
generated. This call graph privdes an overview of all reached functions, as well
as assumptions made that were required for verification of elementary memory-
related sanity properties. These properties include return address integrity (no
function should overwrite its own return address) as well as adherence to a calling
convention.

We have applied this approach to Linux Foundation and Intel’s Xen Hypervisor
and to Ubuntu binaries that do file accesses, networking, databases, and a text
editing with a UI. Moreover, we have applied FoxDec to MacOs libraries from
Mozilla Firefox that include cryptographic and security-related libraries and AV
codecs. Running times vary from seconds to about 15 minutes for the vi editor,
spanning over 426.258 instructions and 3139 functions.

1

2 User Manual with Example

2.1 Download, Build & Installation

Up-to-date information on where to download FoxDec, and instructions for building
and installation, can be found at:

https://ssrg-vt.github.io/FoxDec/#build

We assume that the following is run on an x86-64 machine. On ARM MacBooks
with Rosetta, one can use Docker with the FROM –platform=linux/amd64 ubuntu:20.04
to emulate x86.

2.2 Running FoxDec to create Hoare Graph

Compile. As running example, we will consider the wc command. For sake
of explanation, we consider a small and simple implementation instead of taking
the binary as available in a standard Linux or Mac distribution1. We assume the
source ocde is in a file wc.c. First, we compile the example. Go to the directory for
the running example ./binary/. There, we compile the file wc.c to an executable
wc.

Compile the running example
cd ./binary
rm wc wc.entry
gcc wc.c -o wc
cd ..

Run FoxDec. The command-line usage for FoxDec is:

./foxdec.sh $NAME

$NAME The filename of the binary without path

Run FoxDec
./foxdec.sh wc

↪→ Function pointer 16fc introduced at [11b8]

1The source code of the wc example can be found here:
https://www.gnu.org/software/cflow/manual/html_node/Source-of-wc-command.html

2

https://ssrg-vt.github.io/FoxDec/#build
https://www.gnu.org/software/cflow/manual/html_node/Source-of-wc-command.html

2.3 Observing the generated Hoare Graph

The output indicates that FoxDec has finished, but the result may be incomplete.
FoxDec needs as manual input some function entries, i.e., instruction addresses of
the instructions where functions start. After a run, it provides an overview of
dangling function pointers, i.e., addresses that it guesses to be function entries
and that have not been explored yet. Manual analysis shows that the reported
dangling function pointer is indeed a valid function entry. We thus add it to
./binary/wc.entry and rerun FoxDec.

Run FoxDec Again
echo '0x16fc' >> ./binary/wc.entry
./foxdec.sh wc

We no longer see any message reporting dangling function pointers. As such,
we can now observe the results.

2.3 Observing the generated Hoare Graph

Observe Metrics.
A series of metrics have been generated to provide quantative output on precision,

coverage, running time, etc.

Observe Metrics
less ./artifacts/wc.metrics.txt
less ./artifacts/wc.metrics.json

Observe Hoare Graph.
At this point, FoxDec will have generated output concerning the control flow

of the program, the function boundaries, it will have generated invariants and
disassembled instructions, etc. All of this information is stored in a .json file.
For sake of convenience, the information is also outputted in a humanly readable
format. We also specifically provide an overview of all resolved indirections.

Observe Hoare Graph
less ./artifacts/wc.json.txt
less ./artifacts/wc.json
less ./artifacts/wc.indirections

3

2.3 Observing the generated Hoare Graph

Observe Call Graph with Function Contexts.
The call graph has been generated in a .dot file, and needs to be visualized to

a .pdf using Graphviz.

Observe Call Graph
dot -Tpdf -o ./artifacts/wc.calls.pdf ./artifacts/wc.calls.dot

Opening the .pdf file, the call graph has been generated, as well as the function
contexts. These provide information on pointers initially provided to the functions,
as well as there mutual relations (aliassing/separation).

4

	FoxDec Story
	User Manual with Example
	Download, Build & Installation
	Running FoxDec to create Hoare Graph
	Observing the generated Hoare Graph

